KNO scaling in pp / pA and eccentricities in AA collisions

Adrian Dumitru RIKEN BNL and Baruch College/CUNY

RIKEN lunch seminar, March 1st, 2012

A.D. + Yasushi Nara, arXiv:1201.6382

Outline

- (mean) multiplicities from rcBK-UGDs & k_T factorization
- Glauber geometry fluctuations
- "intrinsic" particle production fluctuations:
 KNO scaling in pp and p+Pb @ LHC
- higher-order eccentricities in A+A
- missing theory:
 - energy dependence of mult. distribution from non-linear evolution?
 - role of corrections to MV beyond ρ^2 ?

Reminder on (average) dN/dη

rcBK-UGD & k_T factorization works quite decently

rcBK evolution:

basic "degrees of freedom": dipole scattering amplitude in fund. rep. (2-point fct)

$$\mathcal{N}_F(r, Y; b, A) \equiv \frac{1}{N_c} \operatorname{tr} \langle 1 - V^{\dagger}(y)V(z) \rangle_Y$$

$$\mathbf{r} = \mathbf{y} - \mathbf{z}$$

BK equation (incl. non-linear terms \rightarrow saturation of scattering amplitude!)

$$\frac{\partial \mathcal{N}(r,Y)}{\partial Y} = \int d^2r_1 \ K(r,r_1,r_2) \left[\mathcal{N}(r_1,Y) + \mathcal{N}(r_2,Y) - \mathcal{N}(r,Y) - \mathcal{N}(r_1,Y) \mathcal{N}(r_2,Y) \right]$$

$$\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$$

running-coupling kernel (Balitsky prescription)

$$K(\mathbf{r}, \mathbf{r_1}, \mathbf{r_2}) = \frac{N_c \,\alpha_s(r^2)}{2\pi^2} \left[\frac{1}{r_1^2} \left(\frac{\alpha_s(r_1^2)}{\alpha_s(r_2^2)} - 1 \right) + \frac{r^2}{r_1^2 \, r_2^2} + \frac{1}{r_2^2} \left(\frac{\alpha_s(r_2^2)}{\alpha_s(r_1^2)} - 1 \right) \right]$$

dipole scattering amplitude in adj. rep.

$$\mathcal{N}_A = 2\,\mathcal{N}_F - \mathcal{N}_F^2$$

k_{\perp} -factorization, multiplicity in A+B --> g+X

unintegrated gluon distribution:

$$\varphi(k, Y; b, A) = \frac{C_F k^2}{\alpha_s(k)} \int \frac{d^2 \mathbf{r}}{(2\pi)^3} e^{-i\mathbf{k}\cdot\mathbf{r}} \mathcal{N}_A(r, Y; b, A)$$

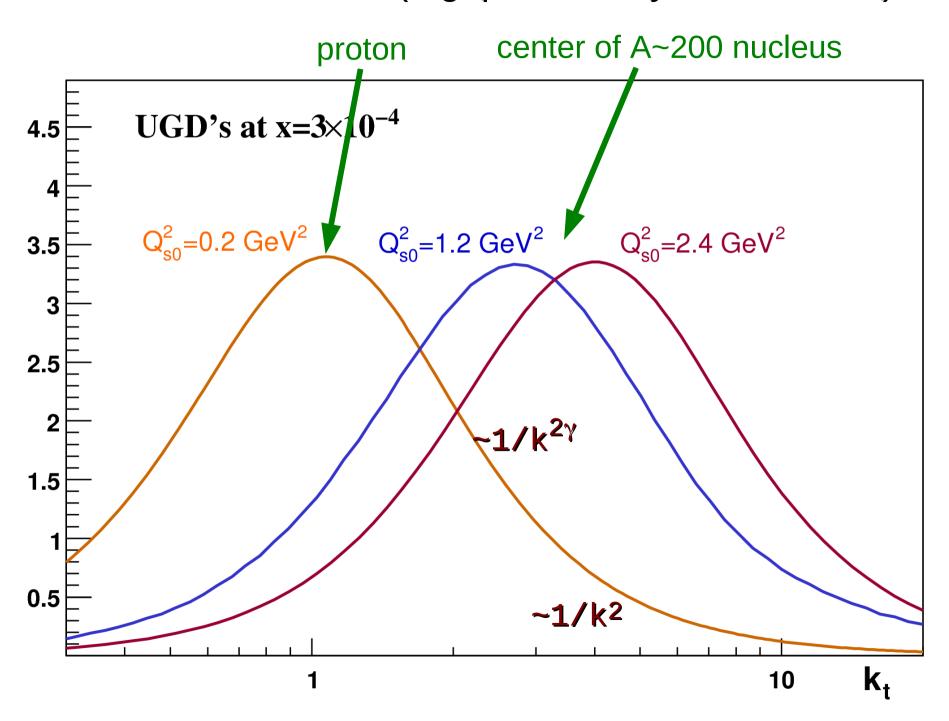
multiplicity (Kharzeev & Levin):

$$\frac{dN^{A+B\to g}}{dy d^2b} = K \frac{1}{2C_F} \int \frac{d^2p_t}{p_t^2} \int^{p_t} d^2k_t$$

$$\alpha_s(Q) \varphi\left(\frac{|p_t + k_t|}{2}, x_1\right) \varphi\left(\frac{|p_t - k_t|}{2}, x_2\right)$$

- finite at $p_t \rightarrow 0$ if UGD does not blow up
- $x_{1,2} = (p_t/\sqrt{s})$ exp (±y); $Y_{1,2} = \log(x_0/x_{1,2})$ where $x_0 = 0.01$ is assumed onset of rcBK evol.
- K = 1.5 2, appears reasonable

uGD at $x = 3x10^{-4}$ (e.g. pt=2GeV, y=0, $\sqrt{s}=7TeV$)



what is the initial condition for rcBK evolution?

- don't really know, small-x doesn't tell
- needs to be set at "sufficiently" small x_0 so that rcBK can take it from there; in practice, x_0 =0.01 ?
- for large A^{1/3}, MV model should provide initial condition:

$$\mathcal{N}_F(r, Y=0; b) = 1 - \exp\left[-\frac{r^2 Q_{s0}^2(b)}{4} \ln\left(\frac{1}{\Lambda r} + e\right)\right]$$

McLerran-Venugopalan action (for large nucleus, $A^{1/3} \rightarrow \infty$)

$$S_{\rm MV} = \int d^2x_{\perp} \, \frac{1}{2\mu^2} \rho^a \rho^a$$

+ soft YM fields + coupling of soft ↔ hard

• $\mu^2 \sim g^2 A^{1/3}$

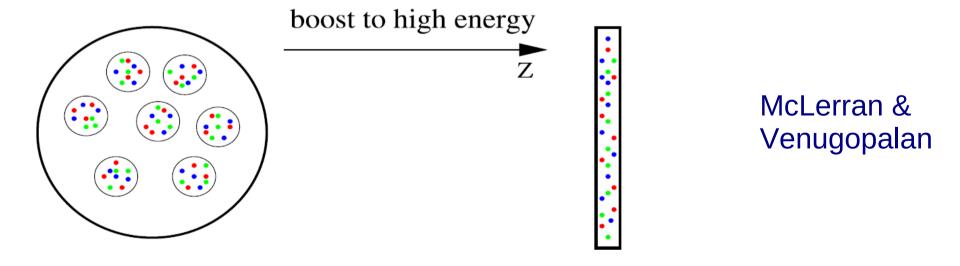
$$\left\langle 1 - \frac{1}{N_c} \operatorname{tr} V_x V_y^{\dagger} \right\rangle_{\mathrm{MV}} = 1 - \exp\left[-\frac{1}{4} \, r^2 Q_{s0}^2 \, \log \frac{1}{r \Lambda} \right]$$

(in log $(1/r\Lambda)$ » 1 limit)

in what follows

$$MV: Q_{s0,N}^2 = 0.2 \text{ GeV}^2$$

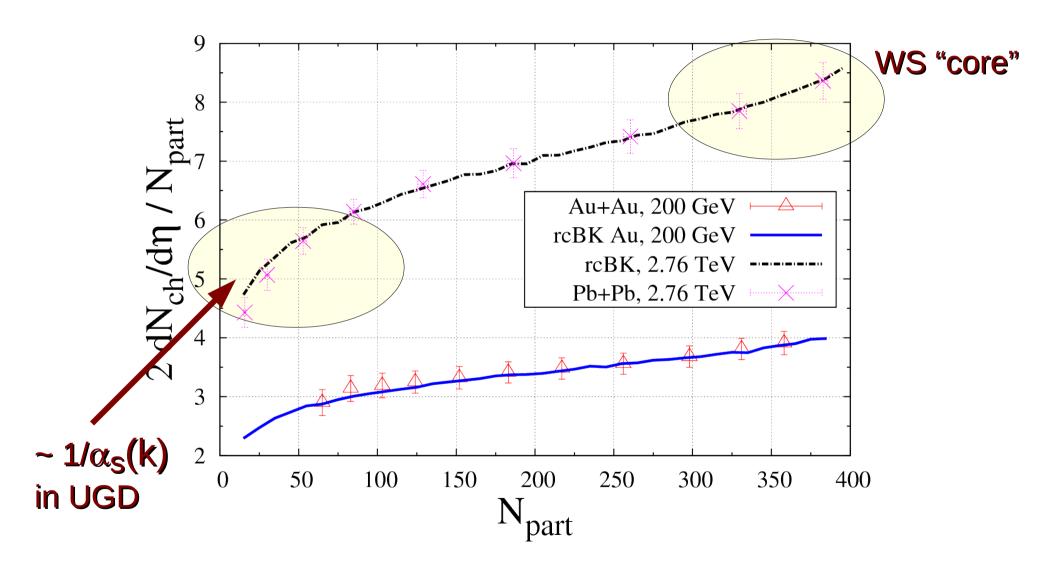
for nucleus, at transv. position b:
 Q²_{s0}(b) = (# nucleons at b) X Q²_{s0,N}



side view

AA: centrality and energy dependence of multiplicities

Albacete & Dumitru: arXiv:1011.5161



assumes N_{hadr} ~ N_{glue}

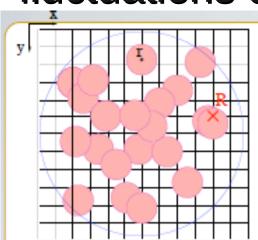
Glauber / geometry fluctuations

fluctuations of transverse positions of valence charges in the colliding nuclei

(can be treated in CGC framework due to separation of slow & fast variables introduced by MV!)

first "MC-KLN" model by H. Drescher & Y. Nara, 2007

fluctuations of valence partons in \perp plane

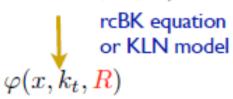


1. Initial conditions for the evolution (x=0.01)

$$N(\mathbf{R}) = \sum_{i=1}^{A} \Theta\left(\sqrt{\frac{\sigma_0}{\pi}} - |\mathbf{R} - \mathbf{r_i}|\right) \longrightarrow Q_{s0}^2(\mathbf{R}) = N(\mathbf{R}) Q_{s0, \text{nucl}}^2$$

$$\varphi(x_0 = 0.01, k_t, \mathbf{R})$$

Solve local running coupling BK evolution at each transverse point



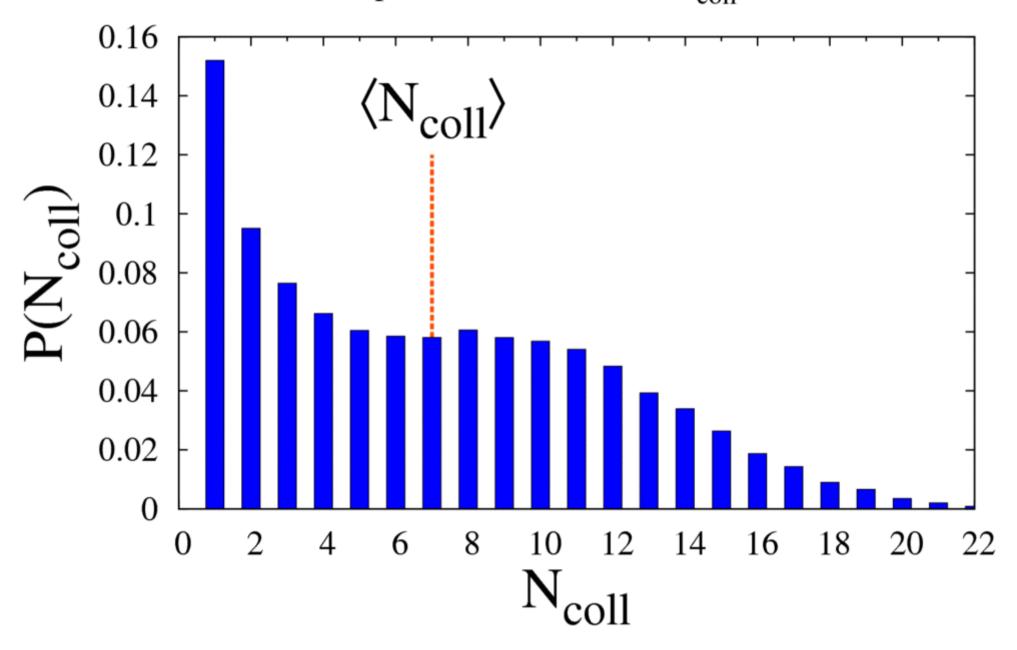
INPUT: $\varphi(\mathbf{x}=0.01,k_{\mathbf{t}})$ FOR A SINGLE NUCLEON:

$$N_{\mathrm{part,A}}(\vec{b}) = \sum_{i=1\cdots A} \Theta\left(P(\vec{b} - \vec{r}_i) - \nu_i\right)$$
.

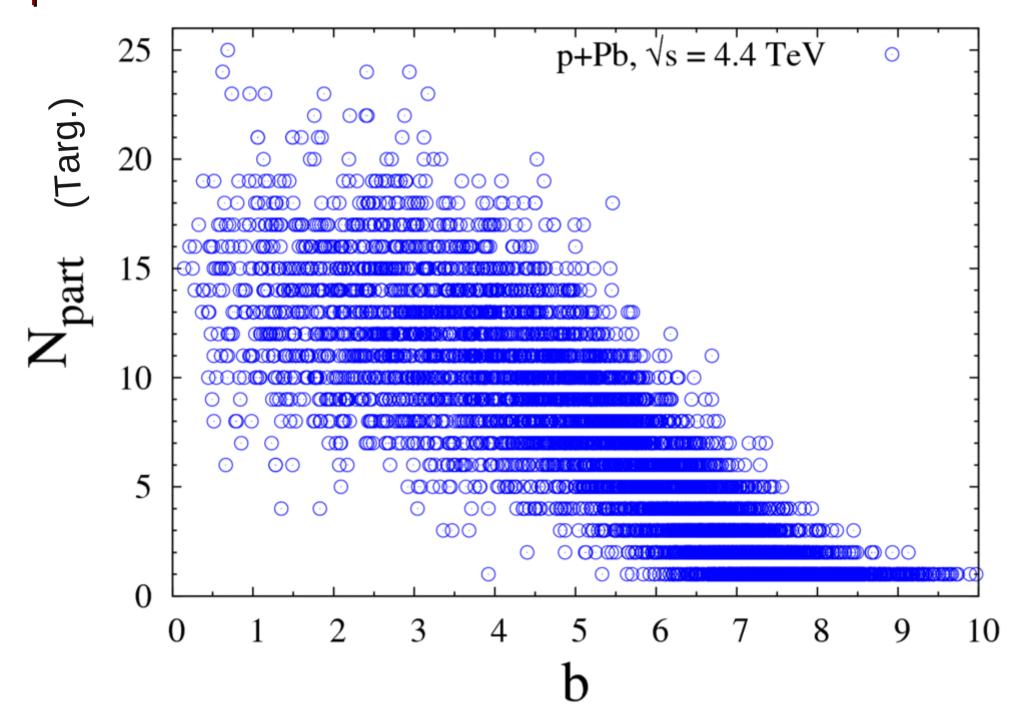
$$P(b) = 1 - \exp[-\sigma_g T_{pp}(b)], \qquad T_{pp}(b) = \int d^2s \, T_p(s) \, T_p(s-b)$$

$$T_p(r) = \frac{1}{2\pi B} \exp[-r^2/(2B)]$$
 $\sigma_{NN}(\sqrt{s}) = \int d^2b \left(1 - \exp[-\sigma_g T_{pp}(b)]\right)$

min bias p+Pb, $\sqrt{s} = 4.4 \text{ TeV}$: N_{coll} distribution



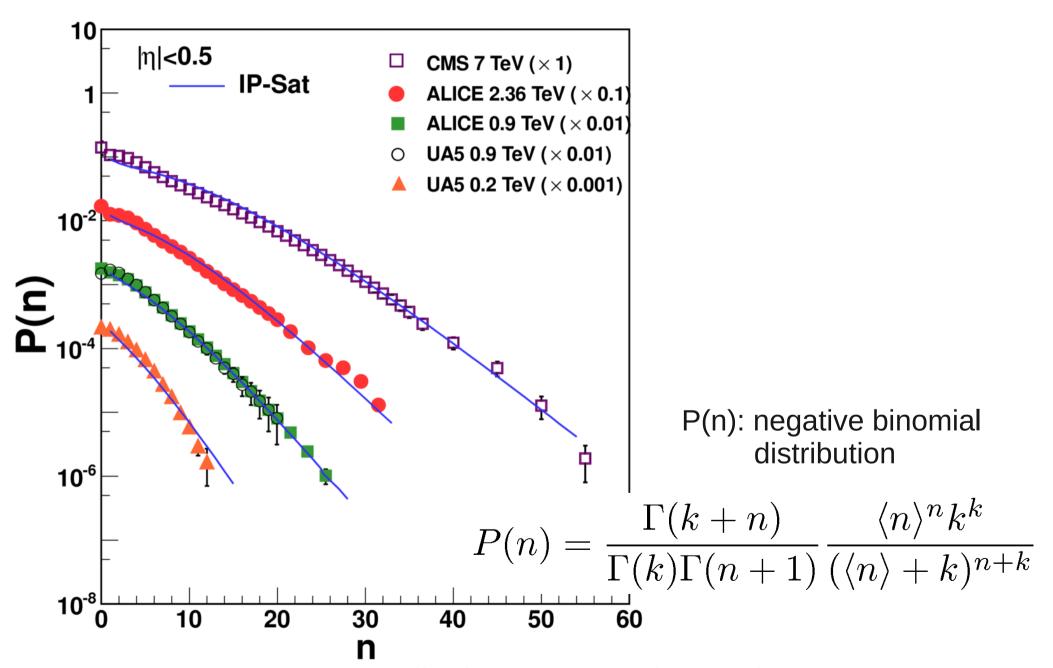
N_{part} fluctuations in p+Pb:



"intrinsic" particle production fluctuations

Multiplicity distributions in pp, KNO scaling

Multiplicity distributions in pp collisions



Tribedy & Venugopalan: arXiv:1112.2445

KNO scaling:

Koba, Nielsen, Olesen, NPB 40 (1972) 317

$$\overline{n} P(n) \equiv \psi(z)$$
 is **universal** (independent of energy); $z \equiv n/\overline{n}$

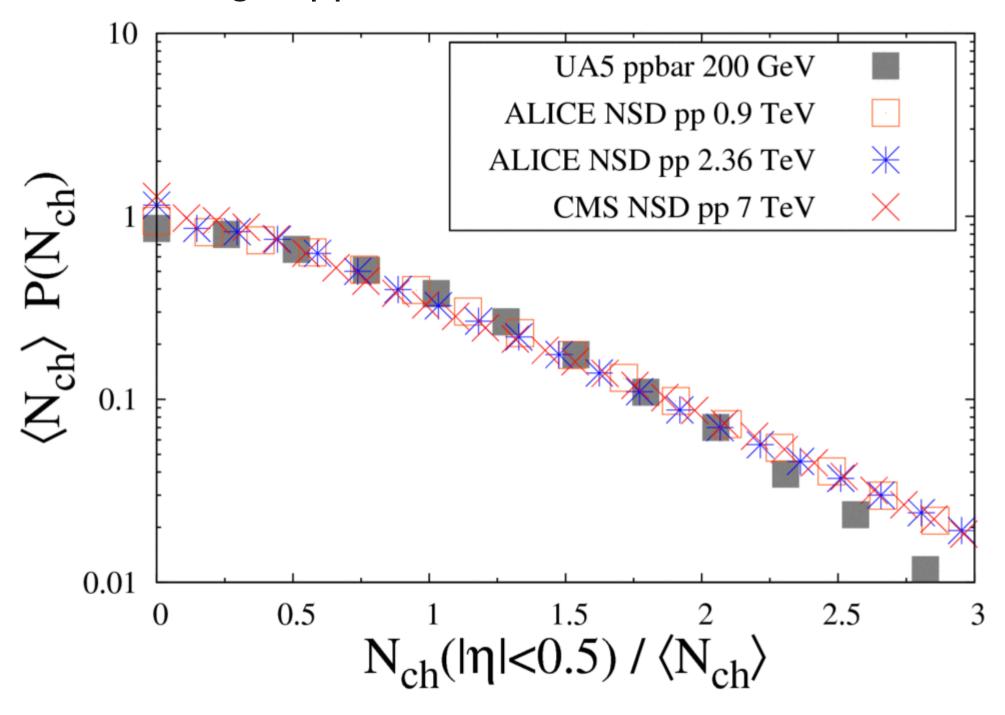
Note that if $k \ll \overline{n}$, NBD can be written as

$$\bar{n} P(n) dz \sim z^{k-1} e^{-kz} dz$$
 , $z \equiv n/\bar{n}$

So, if k=const, this leads to KNO scaling!

for our fit to pp @ LHC: $k / \overline{n} \sim 0.16$ at 2360 GeV

KNO scaling in pp data



NBD from MV model; dominant contractions:

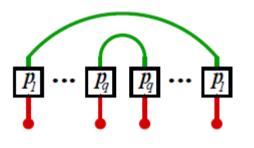
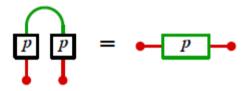
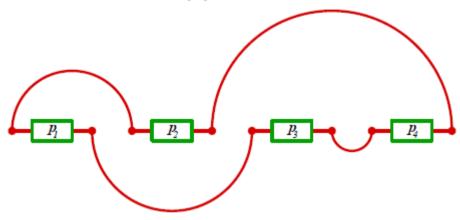


Figure 5: Rainbow diagram.



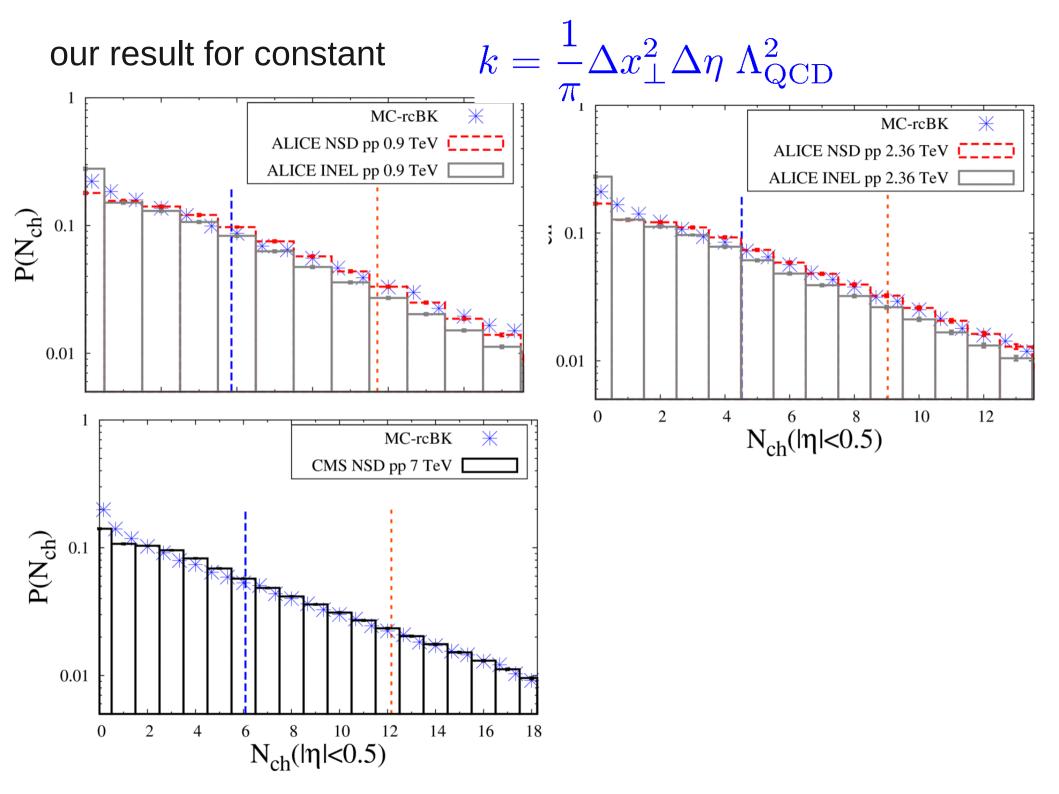
Gelis, Lappi, McLerran: arXiv:0905.3234



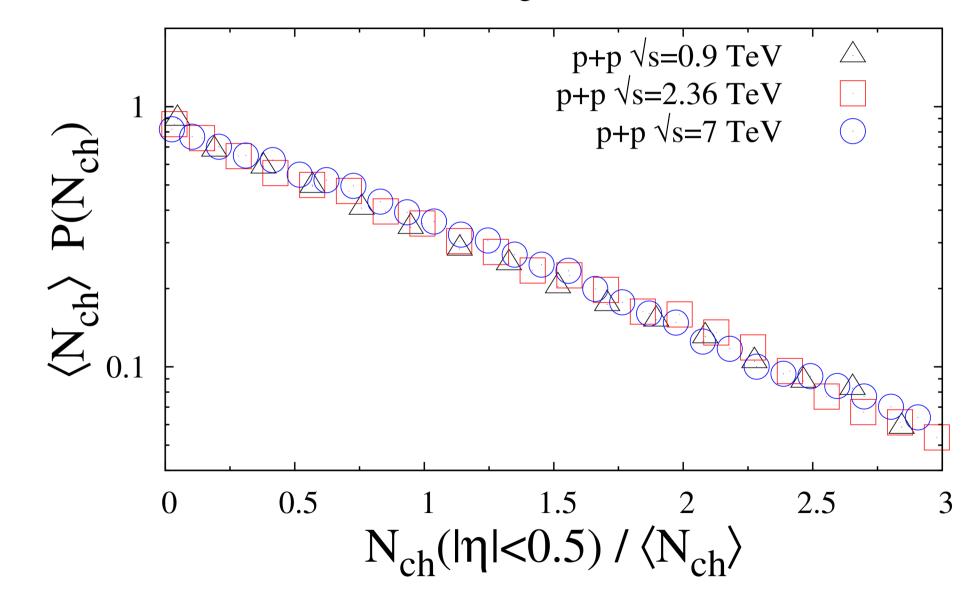
$$P(n) = \frac{\Gamma(k+n)}{\Gamma(k)\Gamma(n+1)} \frac{\langle n \rangle^n k^k}{(\langle n \rangle + k)^{n+k}}$$

$$k \sim Q_{s0}^2 \sim T_A$$

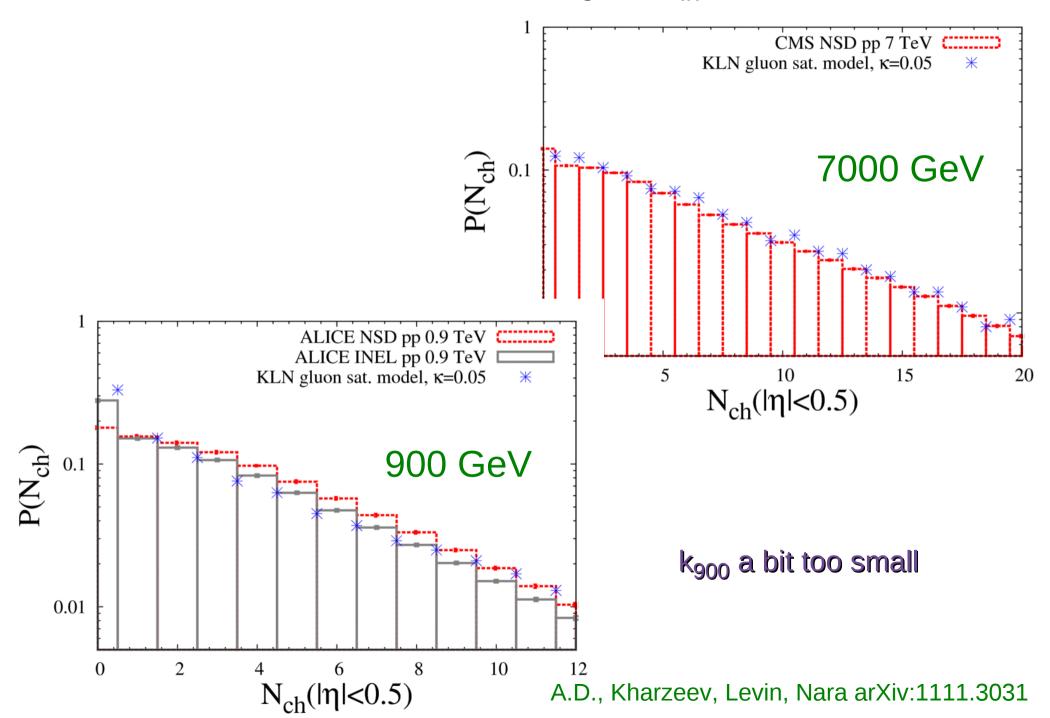
Note: large k ↔ *little* fluctuations (~Poisson)!



MC-rcBK, KNO scaling with $k \propto (\sqrt{s} / 900 \text{GeV})^{0.2}$

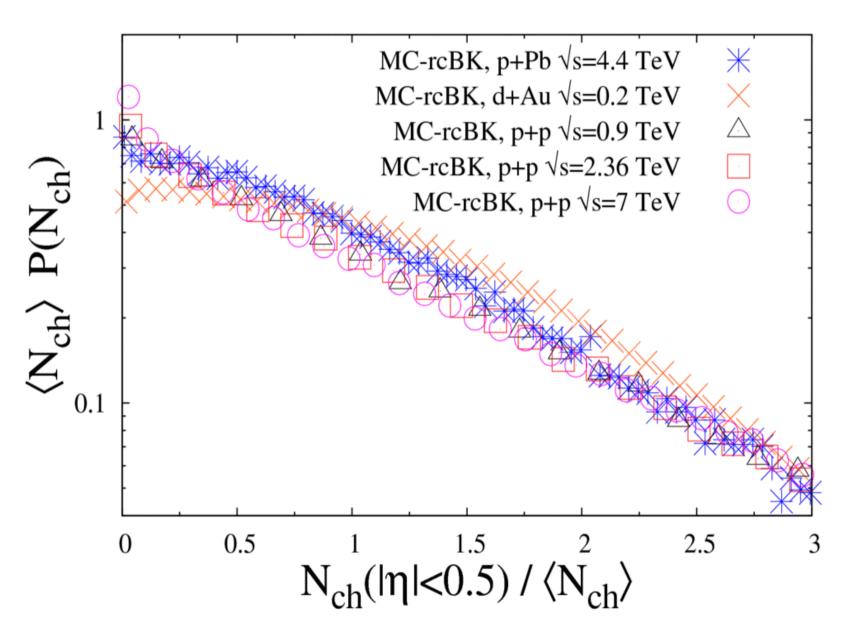


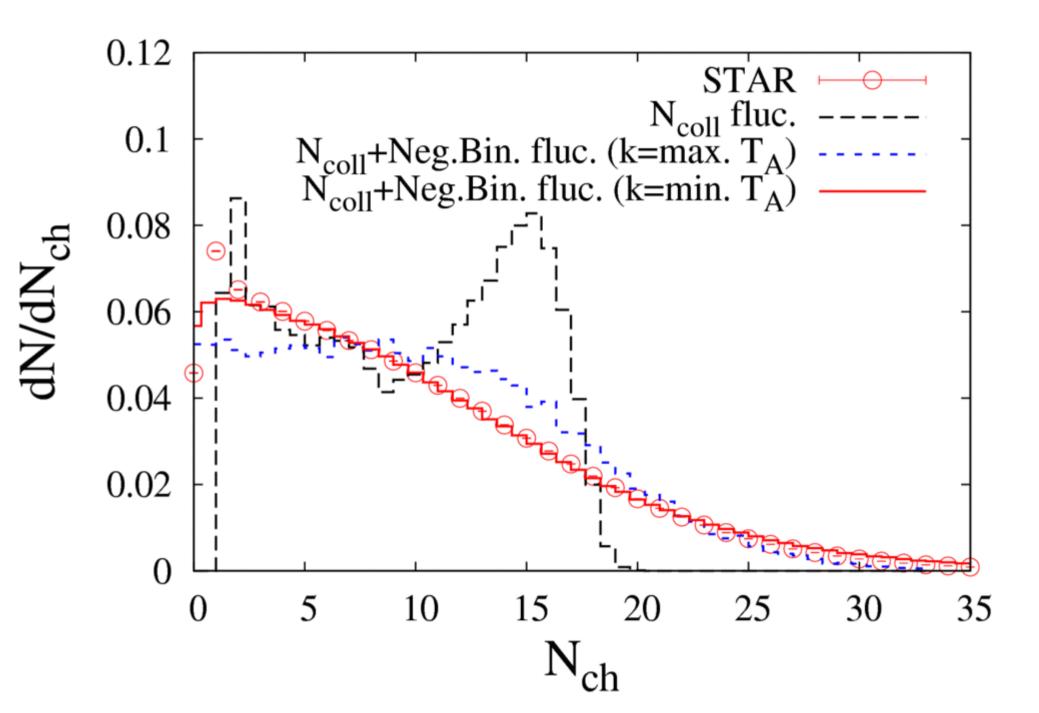
stronger energy dependence $k \sim Q_s^2(x) \sigma_{in}(s)$



KNO scaling (even p+Pb approx.; prediction)

for A+B: $k_{AB} \sim k_{pp} \min(T_A, T_B)$



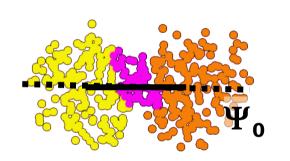


Eccentricity fluctuations

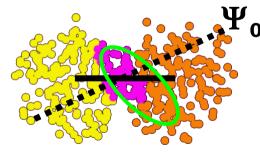
Event-by-event fluctuations in the shape of the initial collision zone may be important.

Specifically fluctuations in the nucleon positions.

B Alver and G Roland, Phys. Rev. C 81, 054905 (2010)



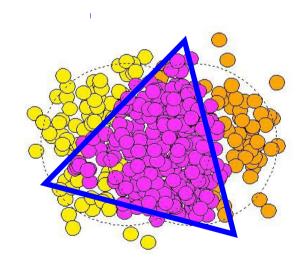
$$\epsilon_{\text{std}} = \frac{\sigma_y^2 - \sigma_x^2}{\sigma_y^2 + \sigma_x^2}$$



$$\langle \epsilon_{\text{part}} \rangle = \frac{\sqrt{(\sigma_y^2 - \sigma_x^2)^2 + 4\sigma_{xy}^2}}{\sigma_y^2 + \sigma_x^2}$$

$$\sigma_{x}^{2} = \langle x^{2} \rangle - \langle x \rangle^{2}, \ \sigma_{y}^{2} = \langle y^{2} \rangle - \langle y \rangle^{2}, \ \sigma_{xy}^{2} = \langle xy \rangle - \langle y \rangle \langle x \rangle$$

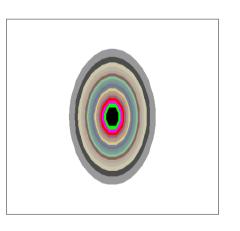
R.S.Hollis (PHOBOS) nucl-ex0707.0125

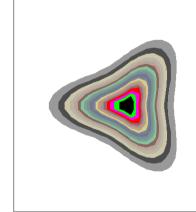


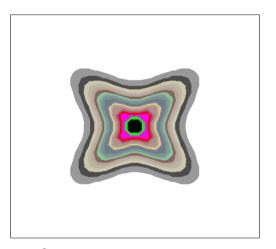
Higher order Eccentricities

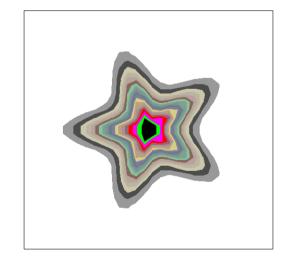
$$\epsilon_n = \frac{\sqrt{\langle r^2 \cos(n\phi) \rangle^2 + \langle r^2 \sin(n\phi) \rangle^2}}{\langle r^2 \rangle}$$

$$r^2 = x^2 + y^2$$
, $x = r\cos(\phi)$, $y = r\sin(\phi)$



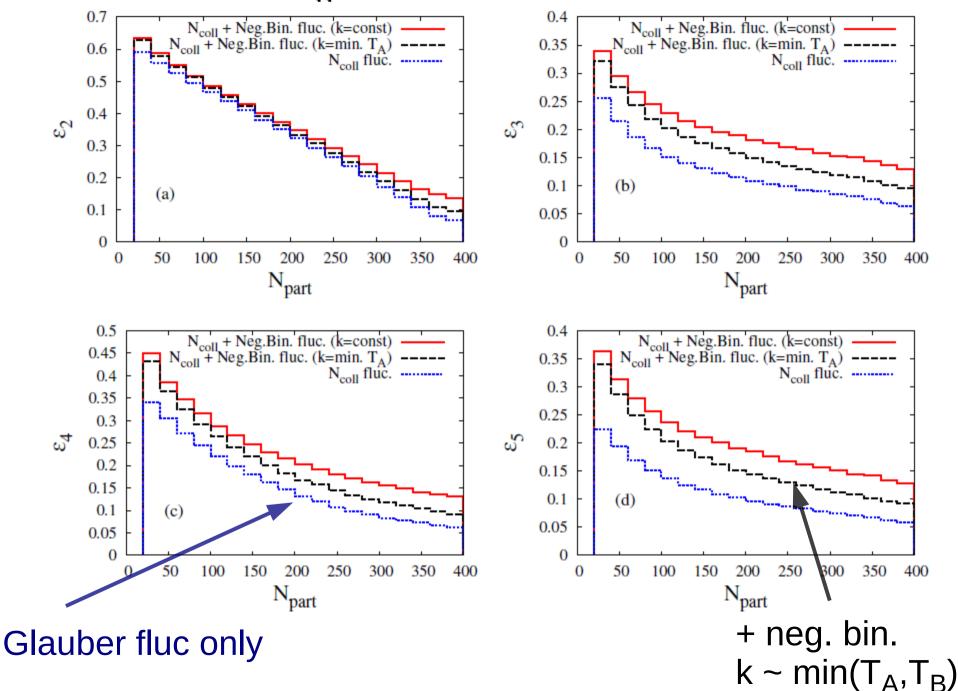






$$e(r,\phi) = e_0 \exp\left[-\frac{r^2}{2\sigma^2}(1 + \epsilon_n \cos(n\phi))\right]$$

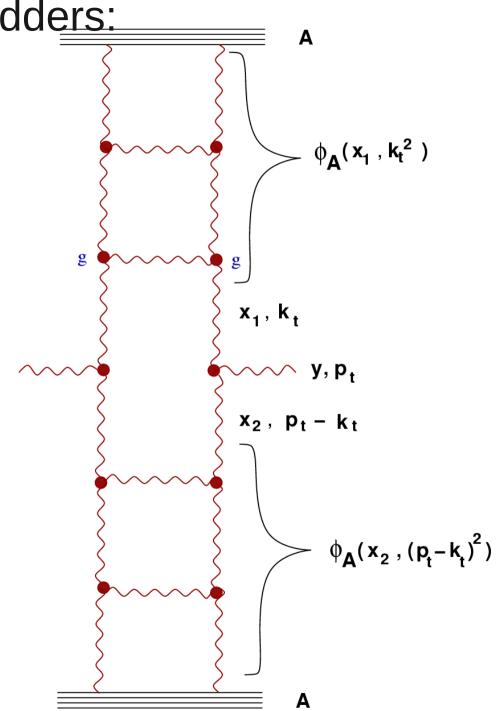
Eccentricities ε_n in Au+Au



Questions for theory...

Fluctuations in evolution ladders:

do (rapidity-enhanced) quantum fluctuations satisfy KNO scaling?

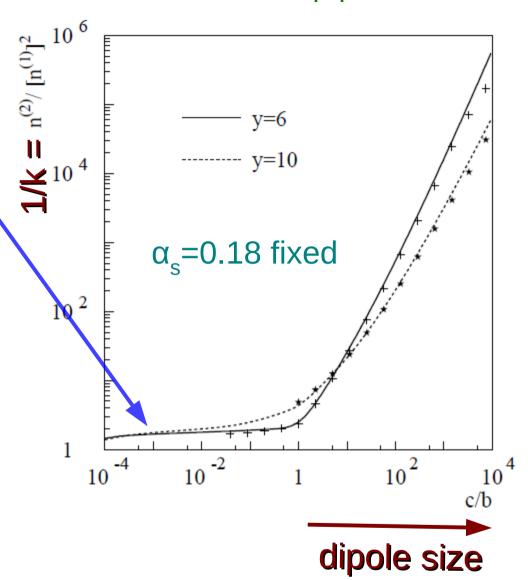


- KNO scaling for very small dipole sizes (DLA approx.)
- BFKL saddle point though gives

$$k^{-1} \equiv \beta_2 \sim e^{\#\bar{\alpha}_s y}$$

for small dipole sizes

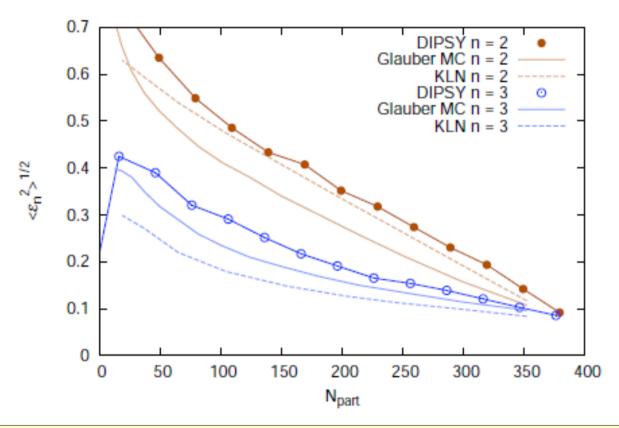
 "The main results are that for intermediate and large sizes, KNO scaling is not observed"



DIPSY MC w. fluctuations in BFKL ladders

Results: $\varepsilon_2, \varepsilon_3$

C. Flensburg: ISMD 2011, Hiroshima



compare DIPSY <----> MC-KLN: ϵ_2 similar, ϵ_3 much larger

does DIPSY reproduce KNO in pp, pA?

Non-Gaussian initial conditions for high-energy evolution

- Odderon operator $-d^{abc} \rho^a \rho^b \rho^c/\kappa_3$

S. Jeon and R. Venugopalan,

Phys. Rev. D70, 105012 (2004); 71, 125003 (2005)

- Effective action for a system of $k \sim N_c A^{1/3} \gg 1$ valence quarks in SU(3);
- Random walk of SU(3) color charges in the space of representations (m,n);
- Probability $P(m,n) = e^{-S(m,n)}$

$$S(m, n; k) \simeq \frac{N_c}{k} C_2(m, n) - \frac{1}{3} \left(\frac{N_c}{k}\right)^2 C_3(m, n) + \frac{1}{6} \left(\frac{N_c}{k}\right)^3 C_4(m, n)$$

 $C_2,\ C_3,\ C_4$ - Casimir operators for the representation (m,n)

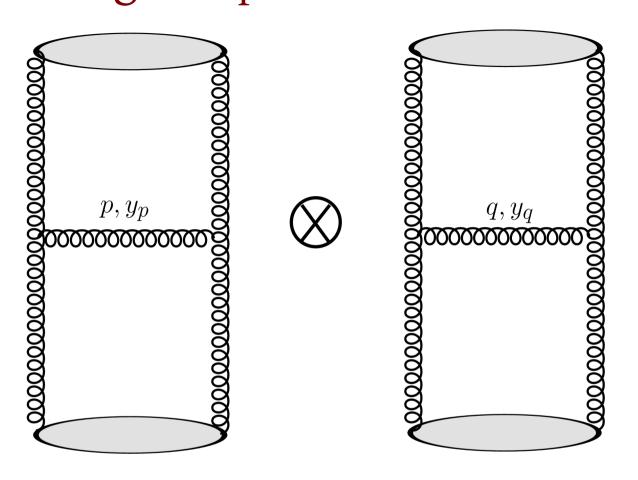
- Define color charge per unit area $~
ho^a \equiv g ~ Q^a/\Delta^2 x$ where $~ |Q|=\sqrt{Q^aQ^a} \equiv \sqrt{C_2}$

Elena Petreska et al: PRD 2011

$$S = \int d^2x_{\perp} \left\{ \frac{1}{2\mu^2} \rho^a \rho^a - \frac{1}{\kappa_3} d^{abc} \rho^a \rho^b \rho^c + \left[\frac{1}{\kappa_4} \left(\delta^{ab} \delta^{cd} + \delta^{ac} \delta^{bd} + \delta^{ad} \delta^{bc} \right) + \frac{1}{\kappa_4'} \left(d^{abe} d^{cde} + d^{ace} d^{bde} + d^{ade} d^{bce} \right) \right] \rho^a \rho^b \rho^c \rho^d \right\}$$

- + soft YM fields + coupling of soft ↔ hard
- last term absent for SU(2) and SU(3)
- $\mu^2 \sim g^2 A^{1/3}$; $\kappa_3 \sim g^3 A^{2/3}$; $\kappa_4 \sim g^4 A$

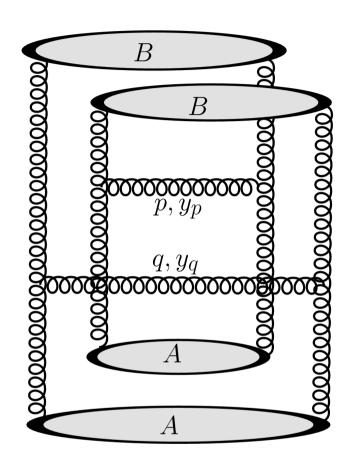
independent 2-gluon production with MV action



$$\sim -N_c^2 (N_c^2 - 1)^2 (\pi R^2)^2 \frac{\mu^8}{p^2 q^2} \int \frac{dk^2}{k^2} \frac{1}{(p - k)^2} \int \frac{dk'^2}{k'^2} \frac{1}{(q - k')^2}$$

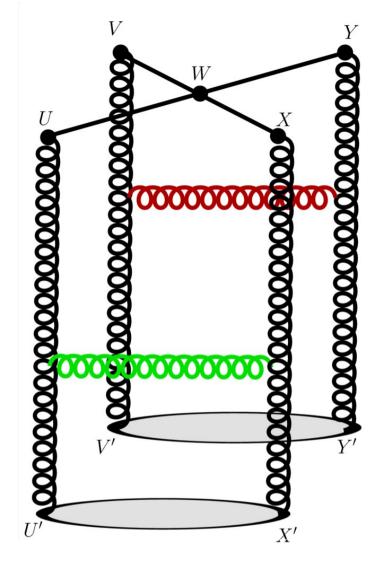
$$\sim -\frac{N_c^2 (N_c^2 - 1)^2}{p^4 q^4} A^{8/3} \log \frac{p^2}{Q_s^2} \log \frac{q^2}{Q_s^2}$$

double gluon production with MV action



$$\sim N_c^2 (N_c^2 - 1) \pi R^2 \frac{(\mu^2)^4}{p^2 q^2} \int \frac{dk^2}{k^4} \frac{1}{(p - k)^2} \frac{1}{(q - k)^2}$$

$$\sim \frac{N_c^2 (N_c^2 - 1)}{p^4 q^4} A^{5/3}$$



$$\sim -N_c^2 (N_c^2 - 1)^2 \frac{(\mu^2)^2 (\mu^4)^2}{\kappa_4} \frac{\pi R^2}{p^2 q^2} \int \frac{dk^2}{k^2} \frac{1}{(p - k)^2} \int \frac{dk'^2}{k'^2} \frac{1}{(q - k')^2}$$

$$\sim -\frac{N_c^2 (N_c^2 - 1)^2}{p^4 q^4} A \log \frac{p^2}{Q_s^2} \log \frac{q^2}{Q_s^2}$$

$$\sim -rac{N_c^2(N_c^2-1)^2}{p^4q^4}\; A\; \lograc{p^2}{Q_s^2}\; \lograc{q^2}{Q_s^2}$$

compute k⁻¹ from 2-particle connected diagrams:

E. Petreska + A.D. 2012

$$Q_{s0}^2 \, S_\perp \, rac{1}{k} \simeq rac{2\pi}{N_c^2 - 1} - rac{\#}{A^{2/3}}$$

"#" should be small so as not to ruin KNO scaling in pp or pA!

We'll know soon.

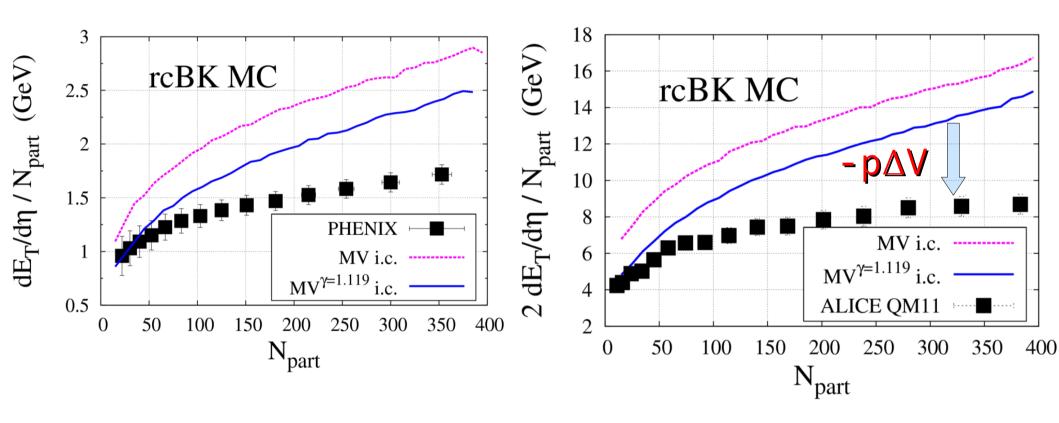
Summary

- multiplicity distributions in pp @ LHC exhibit KNO scaling $(\eta=0, n/n <\sim 3)$
- can be described by NBD with k « n
- approx. KNO scaling predicted for p+Pb @ LHC (KNO flucs dominate over Glauber flucs)
- higher-order eccentricities ϵ_3 etc. in HIC dominated by Glauber geometry flucs but increase substantially

- more theoretical studies of fluctuations definitely needed
 - constrain couplings of higher ρⁿ operators
 - evolution with energy

Backup Slides

Back to AA: centrality and energy dependence of E_⊥



- (again, no g \rightarrow h multiplication factor κ here)
- 1d ideal hydro: $E_{\perp}^f/E_{\perp}^i \approx T_f/T_i \approx 1/2$
- interesting: $(dE_{\perp}/d\eta) / (A \sqrt{s}) \approx 0.5\%$ at LHC₂₇₆₀, centrl Pb+Pb!

Higher-order moments and the length scale of fluctuations

